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Abstract: The Paris Agreement sets a long-term temperature goal to hold global 15 

warming to well below 2.0°C and strives to limit to 1.5°C above preindustrial levels. 16 

Droughts with either intense severity or a long persistence could both lead to substantial 17 

impacts such as infrastructure failure and ecosystem vulnerability, and they are 18 

projected to occur more frequently and trigger intensified socioeconomic consequences 19 

with global warming. However, existing assessments targeting global droughts under 20 

1.5°C and 2.0°C warming levels usually neglect the multifaceted nature of droughts 21 

and might underestimate potential risks. This study, within a bivariate framework, 22 

quantifies the change of global drought conditions and corresponding socioeconomic 23 

exposures for additional 1.5°C and 2.0°C warming trajectories. The drought 24 

characteristics are identified using the Standardized Precipitation Evapotranspiration 25 

Index (SPEI) combined with the run theory, with the climate scenarios projected by 13 26 

Coupled Model Inter-comparison Project Phase 5 (CMIP5) global climate models 27 

(GCMs) under three representative concentration pathways (RCP2.6, 4.5 and 8.5). The 28 

copula functions and the most likely realization are incorporated to model the joint 29 

distribution of drought severity and duration, and changes in the bivariate return period 30 

with global warming are evaluated. Finally, the drought exposures of populations and 31 
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regional gross domestic product (GDP) under different shared socioeconomic pathways 1 

(SSPs) are investigated globally. The results show that within the bivariate framework, 2 

the historical 50-year droughts may double across 58% of global landmasses in a 1.5°C 3 

warmer world, while when the warming climbs up to 2.0℃, an additionally 9% of world 4 

landmasses would be exposed to such catastrophic drought deteriorations. More than 5 

75 (73) countries’ population (GDP) will be completely affected by increasing drought 6 

risks under the 1.5°C warming, while an extra 0.5℃ warming will further lead to an 7 

additional 17 countries suffering from a nearly unbearable situation. Our results 8 

demonstrate that limiting global warming to 1.5°C, compared with 2°C warming, can 9 

perceptibly mitigate the drought impacts over major regions of the world.  10 

Keywords: Global warming; Drought; Copula function; Most likely scenario; 11 

Socioeconomic exposures 12 
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1. Introduction 14 

Climate warming mainly due to greenhouse gas emissions has altered the global 15 

hydrological cycle and resulted in more frequent and persistent natural hazards such as 16 

droughts, which have imposed considerable economic, societal, and environmental 17 

challenges across the globe (Handmer et al., 2012; Chang et al., 2016; EM-DAT 2017). 18 

With the aspiration to mitigate these adverse consequences, the Paris Agreement 19 

proposed to cut greenhouse gas emissions for holding the increase in global temperature 20 

to well below 2.0°C and pursuing efforts, limiting the warming to 1.5°C above pre-21 

industrial levels (UNFCCC, 2015). Regardless of the socioeconomic and technological 22 

achievability of the Paris Agreement goals, portraying the drought evolution with 23 

different warming trajectories would provide valuable information and references for 24 

mankind to enable appropriate adaptation strategies in a warmer future.  25 

  To examine the sensitivity of drought risks with different warming targets, numerous 26 

approaches have emerged. One way is to employ a set of ensemble simulations 27 

produced by a single coupled climate model (e.g., Community Earth System Model, 28 
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CESM), which is designed specifically to perform the impact assessments at a near-1 

equilibrium scenarios of 1.5°C or 2°C additional warming (Sanderson et al., 2017; 2 

Lehner et al., 2017). This single model type cannot reflect the structural uncertainty of 3 

climate models, which is important in impact assessments, and thus raises doubts about 4 

the robustness of such drought condition assessments (Liu et al., 2018). Emerging 5 

modeling efforts such as the “Half a degree Additional warming, Projections, Prognosis 6 

and Impacts” (HAPPI) model inter-comparison project provided a new dataset with 7 

experiments designed to explicitly target impacts of 1.5°C and 2°C above preindustrial 8 

warming (Mitchell et al., 2016). However, the HAPPI employed prescribed 9 

climatological sea surface temperatures and could not consider the internal variability 10 

of ocean-atmosphere circulation, which is crucial in physically simulating climatic 11 

variability and persistence (Seager et al., 2005; Routson et al., 2016). Current studies 12 

usually utilize CMIP5 climate models to project climate scenarios under different RCPs, 13 

identify the time period for a warming target and then examine the drought conditions 14 

associated with different levels of global warming. For instance, Su et al. (2018) used 15 

13 CMIP5 models based on RCP 2.6 and RCP 4.5 to compare the drought conditions 16 

for two warming targets over China and reported tremendous losses will emerge even 17 

under the ambitious 1.5°C warming target.  18 

These prevailing tides of literature almost reach a consensus that, with higher 19 

saturation threshold and more intense and frequent dry spells driven by rising 20 

temperatures, drought conditions would considerably worsen in many regions of the 21 

world (Mitchell et al., 2016; Liu et al., 2018). The potentially devastating impacts of 22 

more severe drought conditions on society raise considerable concerns, motivating a 23 

number of global socioeconomic assessments of future drought change impact (e.g., 24 

Below et al., 2007; Schilling et al., 2012). For instance, Liu et al. (2018) investigated 25 

global drought evolution and corresponding population exposures in additional 1.5°C 26 

and 2°C warming conditions using a set of CMIP5 models under RCP 4.5 and RCP 8.5. 27 

Naumann et al. (2018) assessed the development of drought conditions across the world 28 

for different warming targets in the Paris Agreement. These studies concluded that there 29 
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are considerable benefits for the environment and society of limiting warming to 1.5°C 1 

relative to 2.0°C, although 1.5°C warming still implies a substantial challenge for global 2 

sustainable development. However, most previous socioeconomic assessments (e.g., 3 

Peters, 2016; Park et al., 2018; Liu et al. 2018) have focused on a static socioeconomic 4 

scenario, probably due to data constraint. These studies cannot capture the dynamic 5 

nature of population and assets over time, that has been identified as crucial for 6 

simulating realistic societal development path (Smirnov et al., 2016). Recently, five 7 

Shared Socioeconomic Pathways (SSPs) have been proposed, providing a more 8 

reasonable dataset to characterize a set of plausible alternative futures of societal 9 

development with consideration of climate change and policy impacts over the 21st 10 

century (Leimbach et al., 2017). To date, the SSPs have not yet been incorporated into 11 

the drought impact assessments with warming at the global scale. 12 

More importantly, among existing global drought impact assessments, especially 13 

those targeting different warming levels proposed by the Paris Agreement, drought 14 

variables such as severity and duration are usually separately investigated through 15 

probability modelling and stochastic theories (e.g., Sanderson et al., 2017; Lehner et al., 16 

2017; Su et al., 2018). Knowing that droughts are multifaceted phenomena (Xu et al., 17 

2015; Tsakiris et al., 2016) usually characterized by duration and severity, univariate 18 

frequency analysis is unable to describe the probability of occurrence for the drought 19 

events physically and may lead to underestimation of drought risks and societal hazards. 20 

For instance, droughts with a moderate severity but a long persistence are seldom 21 

identified as severe events in univariate analysis; nevertheless, they may pose 22 

substantial socioeconomic losses because of rapid stored water depletion and low 23 

resilience to subsequent droughts (Lehner et al., 2017). Therefore, there is an urgent 24 

necessity to incorporate the joint modeling of multiple drought features into impact 25 

assessments (Genest et al., 2007; Liu et al., 2015). The copula function that shows good 26 

feasibility of marginal distributions in modeling inter-correlated variables has been 27 

introduced in multivariate analysis for droughts (e.g., Wong et al. 2013; Zhang et al. 28 

2015; Ayantobo et al., 2017). However, to the authors’ knowledge, no previous work 29 
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links the high interdependence of drought characteristics to a global impact assessment 1 

under different warming levels.  2 

In the multivariate framework, selection of variable combinations along the 3 

quantile curve poses a new challenge, as the choice of the joint return period (JRP) leads 4 

to infinitely many such combinations. To meet the needs of infrastructure design and 5 

adaptivity, many researchers (e.g., Chen et al. 2010; Li et al. 2016; Zscheischler et al., 6 

2017) have assumed that the correlated variables have the same probability of 7 

occurrence under a given JRP, which is called the equivalent frequency combination 8 

(EFC) method. Despite the fact that the EFC method has low calculation complexity, 9 

the statistical and theoretical basis of the equal frequency assumption is questionable 10 

(Yin et al. 2018a). To develop a more rational design for a multivariate approach, a 11 

novel concept of “most likely design realization” to choose the point with the highest 12 

likelihood along the quantile curve has been proposed in frequency analysis (Salvadori 13 

et al. 2011; Yin et al. 2019). It would be very important to evaluate and characterize 14 

these different likelihoods of drought events in bivariate drought impact assessment 15 

under a warming climate. 16 

In this study, under a bivariate framework, we quantify changes in global drought 17 

conditions and socioeconomic exposure with additional levels of 1.5°C and 2.0°C 18 

warming. The drought characteristics are identified using the Standardized 19 

Precipitation Evapotranspiration Index (SPEI) combined with the run theory and with 20 

climate scenarios simulated by 13 CMIP5 GCMs under three RCPs (RCP2.6, 4.5, and 21 

8.5). The copula functions and most likely realization are incorporated to model the 22 

drought severity and duration concurrently, and changes in the bivariate return period 23 

with global warming are systematically investigated. Finally, the drought exposures of 24 

populations and regional GDP under different shared socioeconomic pathways (SSPs) 25 

are assessed globally.  26 

 27 
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2. Materials and Method 1 

2.1 Climatic and socioeconomic scenarios 2 

Climate projections are based on ensemble runs (r1i1p1) by 13 models from CMIP5 3 

(Table 1), covering the period 1976-2100 under three RCPs (i.e., RCP 2.6, 4.5, and 8.5).  4 

Ten climate variables were used in this study. Specifically, 9 out of the 10 variables 5 

were applied for the calculation of potential evapotranspiration (PET). These 9 6 

variables include: surface mean air temperature, surface minimum air temperature, 7 

surface maximum air temperature, surface wind speed, relative humidity, surface 8 

downwelling longwave flux, surface upwelling longwave flux, surface downwelling 9 

shortwave flux, and surface upwelling shortwave flux. The 10th variable is the 10 

precipitation. Then the calculated PET and GCM-simulated precipitation were 11 

employed to calculate drought indices. The PET was initially calculated at the daily 12 

scale. Then both the daily scale PET and precipitation were aggregated to the monthly 13 

scales, and bilinearly interpolated to a spatial resolution of 1.0° × 1.0° on latitude and 14 

longitude for each model simulation.  15 

To assess the exposures of populations and assets to droughts, which will 16 

eventually lead to higher drought losses in the future, instead of using a static 17 

socioeconomic scenario as many studies have (e.g., Hirabayashi et al., 2013; Smirnov 18 

et al., 2016), we employ the spatially explicit global shared socioeconomic pathways 19 

(SSPs). This dataset includes gridded population and GDP data under five SSPs, 20 

covering the period 2010-2100 at a spatial resolution of 0.5°×0.5° (Jiang et al., 2017; 21 

2018; Su et al., 2018; Huang et al., 2019). It involves a sustainable scenario (SSP1), a 22 

pathway of continuing historical trend (SSP2), a strongly fragmented world (SSP3), a 23 

highly unequal world (SSP4), and a growth-oriented world (SSP5). Among 24 

combinations of different RCP trajectories and socioeconomic pathways, some SSP-25 

RCP combinations are unlikely to occur, e.g., SSP3-RCP2.6 and SSP1-RCP8.5 (Jones 26 

et al., 2016). Considering the socioeconomic challenges for mitigation along different 27 
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development paths, the RCP2.6 scenario is associated with SSP1, which will face a 1 

lower challenge of mitigation in the future. The RCP4.5 scenario is associated with the 2 

SSP2, while the highest emission scenario RCP 8.5 is associated with the SSP5, by 3 

which a relatively higher challenge is expected under foreseeable warming conditions 4 

(Samir et al., 2017). 5 

2.2. Definition of a baseline, 1.5℃ and 2℃ global warming 6 

The sensitivity of annual global temperature to climate variability significantly varies 7 

in models and RCPs. Therefore, the time period with additional global warming of 1.5℃ 8 

and 2℃ with respect to pre-industrial conditions also varies between different climate 9 

scenarios. Here, the time periods for different global warming levels are determined 10 

using the 30-year running-mean of multi-model ensemble mean of global-mean surface 11 

air temperature, following previous studies (Vautard et al., 2014; Su et al., 2018). We 12 

first select a baseline period of 1976-2005, during which the observed global average 13 

temperature was approximately 0.46-0.66℃ warmer than pre-industrial condition 14 

(IPCC, 2018). This reference period is widely adopted for climate impact assessment 15 

(e.g., Vautard et al., 2014), and we set the warming degree during baseline period as 16 

0.51℃; hence the 1.5℃ and 2.0℃ warming targets are determined by additional 17 

warming of 0.99℃ and 1.49℃, respectively. For each RCP, we define the 1.5℃ and 2℃ 18 

warmer worlds during which the moving 30-year period with global warming closely 19 

approximates to the corresponding warming levels (see Fig. 1).  20 

2.3 Drought indices and event identification 21 

2.3.1 Standardized Precipitation Evapotranspiration Index 22 

The drought condition is quantified with the SPEI developed by Vicente et al. (2010), 23 

which has been widely adopted in characterizing drought conditions (e.g., Ayantobo et 24 

al., 2018; Wen et al., 2018). The SPEI quantifies the extent of atmospheric water surplus 25 

and deficit relative to the long-term average condition by standardizing the difference 26 

between precipitation and potential evapotranspiration (PET). The SPEI with 3-month 27 
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time scale (SPEI-3) is used in this study because it captures well the shallow soil 1 

moisture available to crops and reflects seasonal water loss processes (Yu et al., 2014).  2 

The PET is first calculated using the Penman-Monteith approach suggested by the 3 

Food and Agriculture Organization of the United Nations (FAO) (Allen et al., 1998):  4 

( ) ( )
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n 2 s a
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where Δ is the slope of saturation vapor pressure vs. air temperature curve (kPa /℃) 6 

and is calculated by: 7 
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where tmean is the surface mean air temperature (°C). Rn is the net radiation (MJ/m2/day) 9 

and is calculated by: 10 

6[ ( )]*10 *3600*24nR rsds rsus rlus rlds= − − −            (3) 11 

where rsds and rsus (rlds and rlus) are surface downwelling and upwelling shortwave 12 

flux (surface downwelling and upwelling longwave flux), respectively (w/m2). G is the 13 

soil heat flux (MJ/m2/day) and is close to zero at the daily scale. γ is psychometric 14 

constant (kPa/°C) and is calculated by: 15 

30.665 10 P −=                          (4) 16 

where P is the atmospheric pressure (kPa). u2 is the wind speed at 2m height (m/s), 17 

transferred from: 18 

2 104.87 / ln(67.8 10 5.42)u u=   −                (5) 19 

where u10 is the surface wind speed at the 10m height simulated by GCMs. es and ea are 20 

saturation and actual vapor pressure (kPa), respectively:   21 
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where rhs is the relative humidity (%), and tmp is temperature (i.e., daily maximum and 24 

https://doi.org/10.5194/hess-2019-480
Preprint. Discussion started: 14 October 2019
c© Author(s) 2019. CC BY 4.0 License.



 

 

9 

 

minimum air temperature). Due to the non-linearity of eq. (6), it would be more 1 

appropriate to apply the average saturated vapor pressure derived from the daily 2 

maximum and minimum air temperature.  3 

The widely used Log-logistic distribution is employed for fitting the 3-month 4 

deficit of precipitation and PET (P-PET) (Touma et al., 2015): 5 

1(x) [1 ( ) ]F
x





−= +
−

                    (8) 6 

where, F(x) denotes the cumulative distribution function; α, β and λ represent shape, 7 

scale and location parameters, which are estimated by the maximum likelihood method 8 

(Ahmad et al., 1988).  9 

    The SPEI-3 can then be derived by standardizing the F(x) into a standard normal 10 

function with a transforming function 1− as follows:  11 

1

3( ) ( ( ))SPEI x F x−

− =                        (9) 12 

2.3.2 Drought event identification 13 

After calculating the SPEI-3 for global terrestrial grid cells, we derive the drought 14 

duration, intensity, and severity using the run theory for the reference and the 1.5℃ and 15 

2℃ warmer worlds. The run theory proposed by Yevjevich et al. (1967) is a useful and 16 

objective method for drought event identification, where a run represents a subset of 17 

time series, in which SPEI-3 is either beneath (i.e., negative run) or over (i.e., positive 18 

run) a fixed threshold. A run with SPEI-3 that continuously stays below -0.5 is defined 19 

as a drought event (Mishra et al., 2010; Zargar et al., 2011), which generally includes 20 

drought characteristics of duration and severity. The persistent time period during a 21 

drought event is further defined as the drought duration, while drought severity 22 

(dimensionless) is defined as a cumulative deficit below -0.5.  23 

2.4 Bivariate return period and most likely realization method 24 

Previous studies usually independently examined the change either in drought duration 25 

or severity under climate warming, neglecting the multiplex nature of droughts 26 

(Naumann et al., 2018). This study jointly models drought duration (D) and severity (S) 27 
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via the copula function, which is versatile for describing dependent hydrological 1 

variables due to its good flexibility of marginal distributions. The widely-used Gamma 2 

distribution was adopted for fitting drought variables in each grid over the globe, and 3 

we selected the Gumbel Copula to model the joint distribution of drought duration and 4 

severity. Within the copula-based approaches, different definitions of joint return 5 

periods (JRPs) have been proposed, such as OR, AND, Kendall, dynamic, structure-6 

based return periods (Yin et al., 2019). Among these, the OR case (Tor) is usually 7 

adopted in drought occurrence assessment (Zhang et al., 2015):                     8 

1 ( , ) 1 [ ( ), ( )]

l l
or

D S

E E
T

F d s C F d F s
= =

− −
                   (10) 9 

where, El represents the expected inter-arrival time of drought events, the joint 10 

distribution F(d, s) could be described by a copula function C[FD(d), FS(s)]; FD(d) and 11 

FS(s) indicate the marginal distribution functions of D and S, respectively.  12 

Under the bivariate framework, the choice of an appropriate Tor leads to infinite 13 

combinations of drought duration and severity. The drought events along the Tor-level 14 

curve are generally not equivalent in terms of environmental and societal consequences, 15 

and hence the likelihood of each event must be taken into consideration when selecting 16 

appropriate joint quantiles. In this paper, the most likely realization method (Salvadori 17 

et al., 2011; Yin et al., 2019) is used to choose the drought scenario with the highest 18 

likelihood along the Tor -level isoline. For a given Tor, the most likely combination point 19 

among all possible events can be derived by the following formula (Gräler et al., 2013):       20 

D S S( *, *) arg max ( , ) [ (d), (s)] (d) (s)

( (d), (s)) 1 /

D

D S l or

d s f d s c F F f f

C F F E T

= =  
 

= −  

         (11) 21 

where, ( , )f d s represents the joint probability density function of drought duration and 22 

severity, 
D S D S S[ (d), (s)] ( (d), (s)) / ( (d))d( (s))Dc F F dC F F d f f=  indicates the density 23 

function of copula; (d)Df  and ( )Sf s  are probability density functions of drought 24 

duration and severity, respectively. Due to the complexity of deriving analytical 25 

solutions in Eq. (5), the harmonic mean Newton’s method (Yin et al., 2018a) is applied 26 

https://doi.org/10.5194/hess-2019-480
Preprint. Discussion started: 14 October 2019
c© Author(s) 2019. CC BY 4.0 License.



 

 

11 

 

to estimate the most likely realizations.  1 

2.5 Calculation of socioeconomic exposure under warmer condition 2 

To calculate the socioeconomic exposures by droughts in different warming 3 

environments, we evaluate the change of drought occurrence frequency in a bivariate 4 

context. Firstly, we estimate the bivariate quantiles of drought duration and severity 5 

(i.e., most likely realization) under one given JRP during the historical period. As the 6 

50-year drought events usually gained great attention by the scientific community and 7 

socio-climatic policymakers (Zhang et al. 2015; Naumann et al., 2018), we adopt this 8 

level as a reference for assessing possible drought implications. With the historical 50-9 

year bivariate quantiles, we can recalculate the joint occurrence frequency under future 10 

additional 1.5℃ and 2.0℃ warming conditions, respectively. It can be inferred that 11 

areas with a JRP lower than 50 years are projected to suffer from more severe drought 12 

conditions. To explicitly assess the drought risk changes from 1.5℃ to 2.0℃ warming 13 

climates, we estimate the ratio of the recalculated recurrence frequency between these 14 

two warming periods, where those areas with a less than 1.0 ratio are projected to be 15 

exposed to worrisome drought conditions.  16 

To evaluate socioeconomic implications of drought with additional warming, we 17 

record the population and GDP in those areas with more severe drought conditions and 18 

define them as exposures by increasing drought risks. As previously stated, we consider 19 

the dynamic nature of socioeconomic development pathways by employing different 20 

SSPs, and used the multi-year average populations and GDPs during 30-year periods 21 

determined by different warming levels. After estimating the socioeconomic exposures 22 

for each GCM simulation, we use the multi-model ensemble mean as an indication for 23 

each grid cell to reduce model bias. Note that we select three RCPs and corresponding 24 

SSPs under two warming targets so that the analysis is performed on six scenarios.  25 
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3. Results 1 

3.1 Projected changes in dryness  2 

We first examine changes in the mean and standard deviation of SPEI-3 from the 3 

historical reference period (1976-2005) to the 1.5℃ warmer worlds (Fig. 2), indicated 4 

by the multi-model ensemble mean results. We find that mean SPEI-3 decreases at the 5 

global scale (across 85% of the land areas, excluding Antarctica), except in very limited 6 

regions at high-latitude areas (e.g., Siberia in Russia) where it exhibits a slight increase. 7 

The descending changes in the mean SPEI-3 imply that, over the majority of the globe, 8 

the probability distribution function of SPEI-3 would shift towards lower values and 9 

hence more severe dryness. Particularly, dramatic decreases combined with strong 10 

model agreement (in terms of sign of change) are presented in Southern America, 11 

Australia, and Northern Africa. This may be attributed to higher evaporative demands 12 

and more frequent and persistent dry spells associated with rising temperatures 13 

(Naumann et al., 2018). On the other hand, we also observe an increase in the standard 14 

deviation of SPEI-3 with additional 1.5℃ warming, particularly in Northern Africa and 15 

Southwestern Asia. As the SPEI-3 follows the standard normal distribution, the 16 

increasing standard deviation means more variability in dryness, which hinders 17 

resilience efforts in a 1.5℃ warmer world. These changes are consistent under three 18 

different RCPs, indicating the robustness of this globally drier future.  19 

How would the dryness pattern change from 1.5°C to 2.0°C warming climates? A 20 

progressive descending change in mean values of SPEI-3 is observed across 58% of the 21 

land surface with the global mean temperature increasing between 1.5℃ and 2.0℃, 22 

although several high-latitude regions (i.e., Russia, Canada) show an insignificant 23 

opposite change. This may be mechanically explained by thick clouds in these regions 24 

that strengthen the reflectance of shortwave radiation and limit the increase of latent 25 

heat flux as well as evapotranspiration, thus contributing to the mitigation of 26 

atmospheric aridity (Huang et al., 2017). For the change in the standard deviation of 27 

SPEI-3, we find that increases occur over continental regions almost globally, 28 
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accompanied by minor spatial variability. Overall, the climatic metric SPEI-3 shows a 1 

strong negative response to the warming climate, suggesting that dryness will intensify 2 

in a future warming world.  3 

3.2 Projected changes in drought characteristics  4 

Fig. 4 shows the relative change of global drought duration and severity derived from 5 

SPEI-3 in the 1.5°C warmer world relative to the historical period under three different 6 

RCPs. The drought duration is projected to slowly prolong with warming across 78% 7 

of the land surface, and 44% of land areas has an increase of higher than 10%, although 8 

the change is not significant in Russia and Sahel areas. The drought severity shows a 9 

much more pronounced rise globally, with significant increases (exceeding 50%) over 10 

46% of global landmasses. Moreover, several regions experience compound increases 11 

(with strong model agreement) in both drought severity and duration, such as Southeast 12 

Asia, Mediterranean, Southern Africa, Southern North America, and South America, 13 

suggesting an urgent need to increase societal and environmental resilience to a 14 

warming climate there. In the tropics and high-latitudes areas, the drought severity is 15 

projected to increase while the duration will decrease. In these regions, mitigation 16 

strategies should target short, intense bursts of drought.  17 

When the global temperature rises from additional 1.5°C to 2.0°C warming, the 18 

world would experience more severe drought conditions, with a further increase in 19 

drought severity accounting for 75% of the land surface (differences in effects between 20 

the 1.5℃ and 2.0℃ warming levels) and a persistent lengthen in duration across 58% 21 

of the land areas (Fig. 5). Similar to the changing pattern from baseline to a 1.5°C 22 

warming climate, the drought severity shows a more rapidly increasing rate than 23 

drought duration globally under the 2.0°C warming world. Comparing the 2.0°C to the 24 

1.5°C warming condition, the increase in drought severity is greater than 10% over 35% 25 

of the land areas, while only 8% of the land areas show such an increase (>10%) in 26 

drought duration. This drought-prone condition is more severe in several regions such 27 

as Mediterranean regions, South Africa and South America, posing large challenges for 28 

existing socio-hydrological systems there.  29 
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To explicitly investigate the changes of drought characteristics under warming 1 

conditions, we also show statistics of drought frequency, duration and severity in the 2 

historical period and future additional warmer worlds in violin plots (Fig. 6), in which 3 

the distributions comprise drought characteristics across all land pixels of the multi-4 

model ensemble mean results. The violin plots (Hintze et al., 1998) consist of a boxplot 5 

inside and an outside violin shape which displays the probability distribution of drought 6 

characteristics. Apparently, the drought frequency based on SPEI-3 is also projected to 7 

pronouncedly lengthen under three RCPs, accompanied by large variability capturing 8 

by the kernel density estimation in Fig 6. This rapid increasing tendency also holds true 9 

for drought duration and severity, and extreme conditions are projected to occur more 10 

frequently under warming climates. For example, the 90% uncertainty range of drought 11 

duration (severity) increases from 2.2-6.5 months to 1.8-7.8 months (from 2.1-6.6 to 12 

2.0-12) under 2.0°C warming climate relative to the historical period.  13 

3.3 Projected changes in drought risks  14 

As evidence is accumulating that high-impact events are typically multivariate in nature 15 

(Zhang et al. 2015; Ayantobo et al., 2017), we now consider a deeper focus on changes 16 

in drought severity and duration within a bivariate framework under different warming 17 

levels. Using the copula-based approach in Section 2.4, we show the median projected 18 

change of the historical 50-year drought conditions over multi-model ensembles under 19 

1.5°C warming climate (Fig. 7). Generally, in regions with a substantial increase in 20 

drought duration and severity (Fig. 5), the 50-year drought events exhibit a rapid 21 

increase in occurrence with warming. More than 88% of global landmasses will be 22 

subject to more frequent historical 50-year droughts, and the frequency of such severe 23 

droughts would double over 58% of the global land surface. For most areas of South 24 

America (except for the zone around the equator), Northeastern America, Central, and 25 

West Asia, and northwest China, the historical 50-year droughts are projected to occur 26 

2 to 10 times more frequently under the ambitious 1.5℃ warming level. Regions with 27 

a lower frequency of historical 50-year drought event indicate a reduction in drought 28 

risks, which are only limited in Siberia, India Peninsula, and Alaska.  29 
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To closely assess the drought conditions with an extra 0.5℃ warming, we derive 1 

the ratio of adjusted 50-year return period between 2.0°C and 1.5°C warming worlds 2 

(Fig. 8). In regions with a ratio of less than 1.0, the present drought events are projected 3 

to occur more frequently under the half a degree additional warming, which accounts 4 

for 71% of continental areas. In addition, the frequency of the historical 50-year 5 

droughts would double across 67% of the global landmasses under the 2.0℃ warming 6 

level. That is, 9% increase of the world land areas compares to the 1.5℃ warming level 7 

(i.e., 58%). Although over some regions such as northern Canada and Eastern Asia, the 8 

occurrence of the extreme droughts will be less frequent to some degree, strong rises in 9 

recurrence frequency with warming are projected to dominate large parts of Europe, the 10 

southern United States, Australia, South America, Northern Africa, and the 11 

Mediterranean.  12 

3.4 Population and GDP exposure from increasing drought risks 13 

To understand the socio-economic influences induced by increasing drought risks (here 14 

defined as more frequent historical 50-year events), we combine the drought projection 15 

with population and GDP information based on SSPs, and estimate exposures by 16 

droughts in the 1.5°C and 2.0°C warmer worlds. Globally, three RCPs suggest a 17 

consistent projection that large percentages of population and GDP will be exposed to 18 

increasing drought risks. In more than 67 (140) countries, 100% (50%) of both 19 

populations and GDPs are exposed to more severe droughts under the 1.5℃ warming 20 

target (Fig. 9). The two socioeconomic factors of GDP and population are highly 21 

correlated (O’Neill et al., 2014). Economically prosperous regions are associated with 22 

higher population and immigration (Fig. S1); thus the drought-affected GDP exposures 23 

usually exhibit similar changing pattern with the population.  24 

In regions with low GDP and population density, even when total socioeconomic 25 

exposures to droughts seem small, droughts can still cause fatal and destructive losses 26 

for those countries if their drought resilience is poor. To give a fairer and more impartial 27 

assessment of droughts’ socioeconomic consequences, we define and assess the fraction 28 

of drought-affected population (or GDP) divided by total population (or total GDP) 29 
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based on different countries in a 1.5°C warming world. With this national assessment 1 

method, we see interesting results (Fig. 9). For example, the United States and China 2 

are no longer the most drought-affected countries, while 100% of the population and 3 

GPD in Mexico, Southern Europe, Middle, and Southern Africa, and Mediterranean 4 

regions (i.e., Turkey, Ukraine) are projected to experience more severe drought, 5 

suggesting large policy challenges there. To illustrate the consequences of limiting 6 

warming to 2.0°C above the preindustrial levels, we also calculate the socioeconomic 7 

exposures under three RCPs (Fig. 10) and the differences in percentage between the 8 

1.5℃ and 2.0℃ warming levels (Fig. S2). Most regions of the globe are projected to 9 

exhibit a generally increasing fraction (relative to 1.5℃ warming) in populations and 10 

GDPs (except for Central Africa and East Asia). To be specific, under the extra half-11 

degree warming, an additional 17 countries are projected to exhibit a 100% fraction in 12 

socioeconomic exposure. More than 10 countries would experience a 30% increase in 13 

population and GDP exposure if the global warming level increased from 1.5℃ to 2.0℃. 14 

These increases illustrate the benefit of holding global warming to 1.5°C instead of 2°C, 15 

particularly for the mitigation of population and GDP exposure to drought.  16 

3.5 National assessment of socioeconomic exposure in typical countries 17 

The drought risks and socioeconomic exposures under warming climates exhibit large 18 

spatial variability, which motivates a more systematic and in-depth assessment on 19 

national scales, particularly for the countries vulnerable to droughts. Therefore, we 20 

investigate more thoroughly the drought-affected land fractions (Figs. 11-12) and 21 

corresponding socioeconomic exposure (Figs. S3-4) in eight hotspot countries spanning 22 

different socio-climatic regions: Argentina, Australia, Canada, China, United States, 23 

South Africa, Brazil, and Mexico.  24 

For assessment at the national scale, spatially aggregating mean changes are more 25 

helpful than per-grid cell changes to indicate the risk of a particular land fraction being 26 

impacted by climate change (Fischer et al., 2013; Lehner et al., 2017). The land 27 

fractions of each grid cell are binned and plotted against the change of drought return 28 

period (relative to historical 50-year drought) (Figs. 11-12). The bin number is fixed to 29 
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20 groups for the eight example countries. In a 1.5°C warming world (Fig. 11), these 1 

spatially aggregated changes explicitly show a significant increase in drought risks over 2 

these hotspot countries, with more than 90% of grid cells projected to suffer from more 3 

frequent droughts.  4 

Nevertheless, we still observe a difference between the tropics and extratropical 5 

regions. The increasing drought risks are more profound in tropical regions (e.g., 6 

Mexico and Brazil) than those over the high-latitude country (e.g., Canada). For 7 

instance, in a 1.5°C warming world, more than 85% of the grid cells (associated with 8 

around 65%-97% of the national populations and GDPs) over Mexico and Brazil could 9 

be exposed to the historical 50-year drought every 20 years. This pronounced increase 10 

in drought risks over tropical countries may be attributed to an oceanic forcing that 11 

favors the formation of deep convection over the ocean and thus weakened the 12 

continental convergence associated with the monsoon (Giannini et al., 2013). This 13 

finding suggests that the tropics may confront more severe, frequent droughts and worse 14 

socioeconomic influences (Figs. S3-4) under a warming climate. When the additional 15 

warming target rises up to 2.0°C, drought conditions worsen over all these example 16 

countries (Fig. 12). The increase in drought risks is still more pronounced in the tropical 17 

countries. More than 90% of the grid cells (associated with around 90%-100% of the 18 

national population and GDP) across Brazil and Mexico will experience drought 19 

frequency double that of the historical 50-year drought. 20 

Overall, increasing drought risks under warming climates can cause major 21 

challenges for sustainable development and existing infrastructure systems, while 22 

ambitiously limiting warming to 1.5°C would substantially mitigate future drought risks 23 

and corresponding socioeconomic exposures.  24 

4. Discussion 25 

Among the warming-induced hydrological changes, one of the most definitive and 26 

detectable changes is the simultaneous increase of precipitation and evaporative 27 

demand, which are governed by the Clausius-Clapeyron relationship (Scheff et al., 28 
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2014). Observations and model simulations have reported a variety of scaling rates 1 

between precipitation and global temperature, where the daily and hourly precipitation 2 

extremes (i.e., 99th / 95th percentile precipitation) usually exhibit a sub C-C scaling at 3 

regional scales, accompanied by spatial and decadal variability (Yin et al. 2018b). For 4 

global average precipitation, however, most climate models project an increase of 1-3% 5 

per degree warming (Liu et al., 2013). This deviation from the C-C relation law is due 6 

to a global radiative energy constraint (Held et al., 2006) and atmospheric moisture 7 

limitation by decreasing relative humidity and increasing the potential for intense 8 

tropical and subtropical thunderstorms under warming (Muller et al., 2011; Yin et al. 9 

2018b). Potential evapotranspiration, on the other hand, is predicted to increase by 1.5-10 

4 % per degree warming (Scheff et al., 2014; Naumann et al., 2018). Therefore, we 11 

expect climate warming to lead to a general intensification of drought conditions, as the 12 

drying of the surface is enhanced with water scarcity. This is confirmed by the 13 

decreasing SPEI-3 and significantly increasing drought severity and duration with 14 

warming globally found here (Figs. 2-8).  15 

Different threshold values in identifying a drought event may cause disparities 16 

regarding drought risk changes and may challenge the robustness of our results. 17 

Generally, the threshold value usually ranges between -1 and 0 (Xu et al., 2015; 18 

Ayantobo et al., 2017, 2018; Yuan et al., 2017; Jiao et al., 2019). Herein, the threshold 19 

of -0.5 is employed to identify droughts varying from mild to extremely dry levels 20 

(Table 2, Chen et al., 2018), which has been widely adopted in drought-related studies 21 

(Liu et al., 2015; Xiao et al., 2017; Chen et al., 2018). The inclusion of minor drought 22 

events can enlarge the sample size in bivariate frequency analysis and thus circumvents 23 

the problem of insufficient samples. Moreover, to verify the robustness of our results, 24 

we also use the -0.8 threshold to serve as a comparison. Relevant results are shown in 25 

Figs. 13-15. Fig.13 displays comparisons of distributions comprising drought 26 

characteristics (i.e. drought frequency, drought duration and drought severity) across all 27 

land pixels between using the -0.8 and -0.5 as the threshold. Figs. 14-15 show 28 

comparisons of projected changes in joint 50-year return periods of droughts between 29 
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using the -0.8 and -0.5 as the threshold under different warming levels. As shown in the 1 

figure (Fig.13), drought characteristics tend to slightly decrease across different periods. 2 

However, future drought risk changes as indicated by the 50-year joint return period 3 

deriving from the -0.8 threshold are similar to those from the -0.5 threshold (Figs. 14-4 

15). This confirms the conclusions of our study.  5 

 Although aggravated drought risks are projected globally, the changing patterns 6 

exhibit large spatial variability, with more significant increases over mid-latitudes and 7 

tropical regions than those over high-latitude landmasses. It should be noticed that 8 

regions (e.g., the Mediterranean, Southern Africa, Southern North America) with large 9 

projected changes generally display strong model agreement (in terms of sign of 10 

change), which implies high confidence in these drought prone areas. Conversely, 11 

substantial model uncertainty of drought projections is particularly clear for regions 12 

with small changing amplitudes, as indicated by weak model agreement (e.g., 13 

Southeastern Asia and Russia).  14 

Moreover, socioeconomic exposure (i.e., population and GDP) under different 15 

warming levels is investigated in this work. Generally, drought conditions and 16 

population (GDP) both contribute to the exposure change. In this study, we mainly 17 

focus on the consequences derived from drought risk changes under different warming 18 

levels. Accordingly, the exposure is defined as the number of people (GDP) being 19 

exposed to areas where the bivariate drought risks increase under the warming climate. 20 

The results indicate that drought risks represented by the joint return period will 21 

significantly increase under the 1.5°C warming level and thus lead to severe impacts on 22 

the population (GDP). Furthermore, an extra 0.5°C warming will result in increasing 23 

drought risks, and at the same time, with ascending population (GDP), the exposure 24 

risk will become more awful. Though not all the land areas (71% of global landmasses) 25 

show increasing drought risks when the warming increases from 1.5°C to 2.0°C, a 26 

further 9% increase in population (119% increase in GDP) will result in a greater 27 

increase in the exposure and subsequently bring about more unbearable socio-economic 28 

consequences. Extracting contributions from population (GDP) and drought risk 29 
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changes to the exposure variations is beyond the scope of this study. However, to better 1 

serve for mitigation and adaptation strategies, there is a need to systematically partition 2 

their relative contributions in future studies.  3 

For example, 100% of the population in tropical regions like Brazil and Mexico 4 

would be affected by increasing drought risks. Indeed, our finding that the tropical and 5 

mid-latitude regions, where the vast majority of global population resides, would bear 6 

the greatest drought risks should be precautious under the foreseeable warming future. 7 

Previous studies have reported that the increases in El Niño frequency (Xie et al., 2010), 8 

an extension of Hadley cell (Lu et al., 2007), and poleward moisture transport by 9 

transient eddies (Chou et al., 2009) under warming all contribute to the drying tendency 10 

in tropics; however, our work does not quantitatively examine these underlying physical 11 

mechanisms behind the spatial variability due to paucity of data.  12 

Besides the spatial variability of drought conditions and socioeconomic exposures, 13 

the uncertainty induced by Global Climate Models (GCMs) and RCP scenarios also 14 

plays an important role in climate impact assessment. Measured by the 90% range of 15 

the changing characteristics of SPEI-3 from historical to 1.5°C warming world and from 16 

1.5°C to 2.0°C warming target, the uncertainty induced by multi-model ensembles are 17 

quantified in each grid under three RCPs (Figs. S5-6). Compared with the ensemble 18 

mean change of SPEI-3 shown in Figs. 2-3, we find that the model uncertainty is 19 

relatively large, particular for South America and Africa where the 90% range even 20 

exceeds the ensemble mean change. This finding also holds true when evaluating the 21 

drought duration and severity (Figs. S7-8), suggesting that model uncertainty cannot be 22 

ignored in climate impact studies.  23 

To fully consider model uncertainty on drought conditions, we also present the 24 

bivariate return period of the present 50-year drought condition for each model under 25 

RCP 4.5 in a 1.5°C warming world, and the occurrence change under an additional 26 

0.5°C warming (Figs. S9-10). As expected, different climate models show large 27 

variations, and several models even exhibit opposite changes over certain regions. 28 

Despite this uncertainty, most models still project general increasing risks at the global 29 

https://doi.org/10.5194/hess-2019-480
Preprint. Discussion started: 14 October 2019
c© Author(s) 2019. CC BY 4.0 License.



 

 

21 

 

scale under climate warming, particularly for middle-latitude areas and tropics. For 1 

RCP uncertainty, although we notice that the changing pattern of drought conditions 2 

under three RCPs are similar to some extent (Figs. S5-8), we observe some differences 3 

among RCP 2.6, RCP4.5 and RCP8.5 scenarios in several regions (especially in extra-4 

tropics). Given that these disparities deriving from different time periods due to the 5 

warming level definition, they cannot perfectly represent the uncertainty of 6 

concentration pathways. Despite this, they can still reflect that RCP uncertainty also 7 

plays a role in climate impact studies, albeit model uncertainty usually accounts for a 8 

dominated part.  9 

Several previous studies (Wang et al., 2018; Gu et al., 2019; Chen et al., 2019) have 10 

been devoted to detecting and attributing uncertainty to GCM structure, RCPs, internal 11 

climate variability, and even drought indices and so on. Here, it is challenging to 12 

consider all these uncertainties systematically; future work could focus on including the 13 

integrated uncertainty and quantifying relative contributions on drought evolution and 14 

impact assessments.  15 

5. Conclusions 16 

Motivated by the 2015 Paris Agreement proposal, we quantify the changes in global 17 

drought bivariate magnitudes and socioeconomic consequences in the 1.5°C and 2.0°C 18 

warmer worlds, with climate projected by the multi-model ensemble under three 19 

representative concentration pathways (RCP2.6, 4.5, and 8.5). The drought 20 

characteristics are identified using the SPEI combined with the run theory, and the 21 

changes in occurrence are measured by both drought duration and severity, with the 22 

incorporation of the copula functions and most likely realization method. The main 23 

conclusions are summarized as follows (Table S1):  24 

(1) The mean of SPEI-3 from the historical period to the 1.5℃ and 2.0℃ warmer 25 

worlds are projected to descend at a global scale, while the standard deviation exhibits 26 

large increases. As the SPEI-3 following the normal distribution, these changes suggest 27 

that the distribution of SPEI-3 would shift towards the negative side with a flatter 28 
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tendency, implying a more severe drying condition in a future warming world. 1 

(2) The drought duration is projected to slowly prolong across 78% of the land 2 

surface, while the drought severity shows a much more pronounced rise globally in the 3 

1.5℃ warming world. Compared to 1.5°C warming condition, there will be a further 4 

increase in drought severity and a persistent lengthening in drought duration under the 5 

additional 2.0°C warming level. Several regions in middle-latitude regions and the 6 

tropics would experience substantial increases in drought magnitude, such as Southeast 7 

Asia, the Mediterranean, Southern Africa, Southern North America, and South America.   8 

 (3) More than 58% of global landmasses would be subject to twice more frequent 9 

historical 50-year droughts even under the ambitious 1.5°C mitigation target. The 10 

drought condition will further worsen under 2.0°C warming climate, with around a 9% 11 

increase of the world landmasses experiencing such severe deterioration comparing to 12 

the 1.5°C warming level.  13 

(4) More than 75 (73) countries are projected to exhibit a 100% fraction in the 14 

population (GDP) exposed to increasing drought risks even under the ambitious 1.5℃ 15 

warming trajectories. An extra 0.5℃ warming will lead to an additional 17 countries 16 

exhibiting a 100% fraction in socioeconomic exposure. Moreover, tropical countries 17 

(i.e., Mexico and Brazil) will be subject to dramatically increased drought risks, with 18 

85% of the land fraction would experiencing a doubled frequency of severe historical 19 

droughts under the 1.5℃ warming target; when the warming is increasing to 2.0℃, the 20 

corresponding land fraction is projected to approach 90%.  21 
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Table 1 Information about the 13 GCMs used in this study 1 

 2 

No. Model name Resolution Institution 

1 BNU-ESM 2.8 × 2.8 
Collegeof Global Change and Earth System 

Science, Beijing Normal University 

2 CanESM2 2.8 × 2.8 
Canadian Centre for Climate Modelling and 

Analysis 

3 CNRM-CM5 1.4 × 1.4 

Centre National de Recherches Météorologiques 

and Centre Européen de Recherche et Formation 

Avancée en Calcul Scientifique 

4 CSIRO-Mk3.6.0 1.8 ×1.8 

Commonwealth Scientific and Industrial 

Research Organization and Queensland Climate 

Change Centre of Excellence 

5 GFDL-CM3 2.5 × 2.0 

NOAA Geophysical Fluid Dynamics Laboratory 6 GFDL-ESM2G 2.5 × 2.0 

7 GFDL-ESM2M 2.5 × 2.0 

8 IPSL-CM5A-LR 3.75 × 1.9 
Institut Pierre Simon Laplace 

9 IPSL-CM5A-MR 2.5 × 1.25 

10 
MIROC-ESM-

CHEM 
2.8 × 2.8 

Japan Agency for Marine-Earth Science and 

Technology, Atmosphere and Ocean Research 

Institute (The University of Tokyo), and National 

Institute for Environmental Studies 
11 MIROC-ESM 2.8 × 2.8 

12 MIROC5 1.4 × 1.4 

Atmosphere and Ocean Research Institute (The 

University of Tokyo), National Institute for 

Environmental Studies, and Japan Agency for 

Marine-Earth Science and Technology 

13 MRI-CGCM3 1.1 × 1.1 Meteorological Research Institute 

 3 
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Table 2 Drought Categories in the SPEI 1 

 2 

SPEI Categories 

>-0.5 Near Normal 

-1.0 to -0.5 Mild drought 

-2.0 to -1.0 Moderate drought 

<-2.0 Extremely drought 

 3 
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 36 

Fig. 1. Projected global mean temperatures when reaching 1.5°C warming (a) and 37 

2.0°C warming (b).  38 

Development of centered 30-year global average temperatures for all 13 General 39 

Circulation Models (GCMs) and 3 Representative Concentration Pathways (RCPs) 40 

included in this study. The vertical dark lines mark the uncertainty when the warming 41 

target is reached. In Fig.1a, the determined time in RCP26 is the same with that in 42 

RCP45, so the vertical dashed grey line is covered by the dashed cyan line.    43 
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 44 

Fig. 2. Projected changes in the mean and standard deviation of SPEI under the 45 

1.5°C warming target  46 

Maps of the projected changes in the mean (a,c,e) and standard deviation (b,d,f) of 47 

SPEI from historical reference period (1976-2005) to the 1.5°C warming target under 48 

RCP2.6, RCP4.5, and RCP8.5. (g,h,i) Zonal results for changes in 1° latitude bin.    49 

The stippling (a-f) is shaded for areas where at least 80% (i.e., 10 out of 13) of the 50 

GCMs agree on the sign of the change. 51 
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 52 

Fig. 3. Projected changes in the mean and standard deviation of SPEI between the 53 

1.5°C and 2.0°C warming target  54 

Maps of the projected changes in the mean (a,c,e) and standard deviation (b,d,f) of 55 

SPEI from 1.5°C to the 2.0°C warming target under RCP2.6, RCP4.5, and RCP8.5. 56 

(g,h,i) Zonal results for changes in 1° latitude bin. The stippling (a-f) is shaded for areas 57 

where at least 80% (i.e., 10 out of 13) of the GCMs agree on the sign of the change. 58 

 59 

 60 
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 62 

Fig. 4. Projected changes in drought duration and severity under the 1.5°C 63 

warming target 64 

Maps of the relative changes (%) in the multi-model ensemble mean drought duration 65 

(a,c,e) and drought severity (b,d,f) from the reference period (1976-2005) to the 1.5°C 66 

warming target under RCP2.6, RCP4.5, and RCP8.5. (g,h,i) Zonal results for drought 67 

duration and severity in 1° latitude bin. The stippling (a-f) is shaded for areas where at 68 

least 80% (i.e., 10 out of 13) of the GCMs agree on the sign of the change. 69 
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 71 

Fig. 5. Projected changes in drought duration and severity between the 1.5°C and 72 

2.0°C warming target  73 

Maps of the relative changes (%) in the multi-model ensemble mean drought duration 74 

(a,c,e) and drought severity (b,d,f) from the 1.5°C to the 2.0°C warming target under 75 

RCP2.6, RCP4.5, and RCP8.5. (g,h,i) Zonal results for drought duration and severity 76 

in 1° latitude bin. The stippling (a-f) is shaded for areas where at least 80% (i.e., 10 out 77 

of 13) of the GCMs agree on the sign of the change. 78 

 79 
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 80 

Fig. 6. Distributions for drought characteristics under different time periods 81 

Distributions in the multi-model ensemble mean drought frequency (a), drought 82 

duration (b) in months, and drought severity (c) across global land areas for the 83 

reference period (1976-2005), the 1.5°C, and the 2.0°C warming target, respectively. 84 
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 85 

Fig. 7. Projected changes in joint 50-year return periods of droughts under the 86 

1.5°C warming target  87 

Projected GCMs median changes in joint 50-year return periods of droughts (duration 88 

and severity) from the reference period to the 1.5°C warming target under RCP2.6, 89 

RCP4.5, and RCP8.5. (d,e,f) Zonal results in each 1° latitude bin; (g) Global land 90 

fraction for each change category. The stippling (a-c) is shaded for areas where at least 91 

80% (i.e., 10 out of 13) of the GCMs agree on the sign of the change. 92 

 93 
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 95 

Fig. 8. Projected changes in joint 50-year return periods of droughts between the 96 

1.5°C and 2.0°C warming target  97 

Projected GCMs median changes in joint 50-year return periods of droughts (duration 98 

and severity) from the 1.5°C to the 2.0°C warming target under RCP2.6, RCP4.5, and 99 

RCP8.5. (d,e,f) Zonal results in each 1° latitude bin; (g) Global land fraction for each 100 

change category. The stippling (a-c) is shaded for areas where at least 80% (i.e., 10 out 101 

of 13) of the GCMs agree on the sign of the change. 102 

 103 

 104 
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 106 

Fig. 9. National population and GDP fraction exposing to more frequent severe 107 

droughts under the 1.5°C warming target  108 

Maps of the population (a,c,e) and Gross Domestic Product (GDP) (b,d,f) fractions 109 

that exposed to increasing drought risks from the reference period to the 1.5°C 110 

warming target under RCP2.6, RCP4.5, and RCP8.5 scenarios. The color-bar in the 111 

right side represents six ranks of the population and GDP fractions.  112 

 113 

 114 

 115 
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 117 

Fig. 10. National population and GDP fraction exposing to more frequent severe 118 

droughts under the 2.0°C warming target  119 

Maps of the population (a,c,e) and Gross Domestic Product (GDP) (b,d,f) fractions that 120 

exposed to increasing drought risks from the reference period to the 2.0°C warming 121 

target under RCP2.6, RCP4.5, and RCP8.5 scenarios. The color-bar in the right side 122 

represents six ranks of the population and GDP fractions.  123 

 124 
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 125 

Fig. 11. Projected changes of drought risks for 8 typical drought-prone countries 126 

under the 1.5°C warming target 127 

Projected GCMs median changes in joint 50-year return periods of droughts (duration 128 

and severity) as a function of land fraction for 8 typical drought-prone countries from 129 

the reference period to the 1.5°C warming target under RCP2.6, RCP4.5, and RCP8.5.  130 
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 131 

Fig. 12. Projected changes of drought risks for 8 typical drought-prone countries 132 

under the 2.0 °C warming target 133 

Projected GCMs median changes in joint 50-year return periods of droughts (duration 134 

and severity) as a function of land fraction for 8 typical drought-prone countries from 135 

the reference period to the 2.0°C warming target under RCP2.6, RCP4.5, and RCP8.5.  136 
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